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Chapter 1

Getting Started

1.1 Introduction

The Poisson Integral Solver with Curved Surfaces (PISCS) is a package written in COSY Script
for MSU COSY Infinity v9.2 and higher. PISCS is a 3-D Poisson boundary value problem
solver accelerated by the fast multipole method (FMM). In this case, the Poisson BVP rep-
resents the electrostatic interactions within a charged particle distribution as a supplement
to beam physics computations.

1.2 Setup

You must install MSU COSY Infinity to use PISCS. Contact the beam physics group at
the COSY website (http://bt.pa.msu.edu/index_cosy.htm) for permission and instructions.
PISCS does not use the COSY beam physics package (cosy.fox) to run.

After COSY is installed, PISCS will need some things to run.

1. piscs.fox

2. fmmepp.zip

3. A parameter file

4. A particle distribution file
5. A structure file

6. (Optional) A boundary condition file
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It is recommended to store these files in a single folder. To set up PISCS:

1. Extract fmmcpp.zip.

2. Compile the fmmcpp executable using at least a C4++11 compiler. A Makefile is
provided for the GNU or Intel compiler on Linux.

3. (Recommended) Create a folder for temporary files.

This concludes the main setup.

1.3 Running PISCS

COSY 9.2 and higher allows running PISCS using command-line arguments. Assuming the
COSY executable is ‘cosy’, the basic command is

cosy piscs.fox <parameter_file (optional)> <diagnostic flag (optional)>
<Rotated M2L flag (optional)> <evaluation flag (optional)>
<evaluation file (optional)>

The parameter file contains all the filenames and input parameters required by PISCS. If no
file is specified, then the default is ‘parameters.dat’ (1.3.1) in the same directory as PISCS.
The diagnostic flag is optional. The default value is ‘0’, which does nothing. Any nonzero
value will print timing information for the major PISCS procedures (if only these times are
desired, then set value to -1’). A value of ‘1’ will print timing information for the major
FMM procedures. A value of ‘2’ or ‘3’ will print GMRES diagnostic information. The rotated
M2L operator has been shown to be more efficient for larger problems (FMM Publication)
and thus may reduce the computational time. The evaluation flag will evaluate the electric
potentials and fields at locations specified in the evaluation file if the flag is set to ‘1’. This
useful when the user wants to sample the potentials due to a particle distribution at locations
different from the particle locations.

Note, PISCS can optionally be run as an executable by the program Run Cosy (downloadable
package from MSU). All filenames must include relative paths. The input lines are (sample
taken form the parameters.dat file included in the piscs_example folder) shown in 1.3.1.

The temporary folder must be created beforehand. The particle file contains the space or
comma separated particle coordinates X,Y,Z, with one particle per line. The structure file
is explained in the next sections ( 1.4, 1.5). The element order describes the order of the
polynomial used to interpolate a curved surface element. 15 order corresponds flat elements,
274 order elements are interpolated using a quadratic polynomial, etc. The boundary con-
ditions can be described in two ways. The first (as shown in 1.3.1) is to include a single
value that specifies the potential over the entire surface. If a varying boundary potential


https://www.sciencedirect.com/science/article/abs/pii/S1007570419300012
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tmp/ Temporary folder for FMM data files (OutputPath)
N=1000.dat Particle file (SourceFile)

protons Particle species (ChargeFile)
sphere_order=1.struct Structure file (TargetFile)

0 Minimum clustering parameter (MinQ)
./fmmepp.intel Relative path to FMMCPP executable (fmmcpp_program)
6 FMM multipole order (P_Order)

1 Element order (El_Order)

Dirichlet Boundary condition type (BCFlag)

0 QBX flag (QBXflag)

10 Boundary conditions (BoundF)

0 Preconditioning flag (PFlag)

0 Select Unit scaling (F'Type)

0 Memory Parameter (Mempar)

Data File 1.3.1: parameters.dat

is desired, then this inputs links to a file with the boundary condition (numerical value) is
listed for each point in the structure file (the order of boundary values should correspond to
the point order in the structure file). The QBX flag (‘0’ or ‘1’) determines whether the QBX
near-boundary refinement is applied (2.2). The preconditioning is generally unnecessary for
PISCS and can be left inactive. The unit scaling is included to improve numerical stability
of the calculations. Use ‘0’ for SI units, or ‘1’ for natural units. Specifying a memory param-
eter specifically for FMM evaluations can improve the computational efficiency for certain
applications. The default (if ‘0’ is specified) is 50000, where 1 signifies the memory required
to store a single double precision number.

1.4 Structure File

The structure file uses a particular format to describe the bounding surface. It is assumed
the origin is always inside the surface.

1. First line is the total number of elements.
2. Subsequent lines are element blocks.

3. Each element block consists of the number of nodes corresponding to the input element
order.

4. One node per line. Each node is described by (space- or comma-separated) coordinates
and unit normals, z, y, 2, ng , Ny , n..
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Example 1.
T Y Z Ny Ny N

7 points # elements

1
_ _ 2
0= {—10 ( 15+ v/5/29 + 36p + 12p )J

4 points = 0 FDO+2)

1.5 Generating the structure file

To generate the variable element order structure mesh, we used gmsh (http://gmsh.info/).
Gmsh has many features and can be read in detail on their website. Gmsh can generate
a high order mesh based on many common CAD formats. The mesh may require some
refinement in gmsh to minimize distortions, however, we have found that the Gmsh built-
in refinement process leads to a degradation of final results. We provide a COSYScript
program, ‘gmshparser.fox’, for converting from gmsh’s (*.msh) 2D triangular element mesh
to ours. The command is as shown:

cosy gmshparser.fox <+*.msh filename> <input mesh order> <output order>
<output filename (optional)> <scaling factor (optional)>
<normal direction (optional)>

The default output file is ‘struct.dat’. For the most accurate results, set input mesh order
i, output order. The scaling factor is a positive number which scales the structure up (if
the # > 1) or down (if the # < 1), and the normal direction can flip the orientation of the
structure normals (-1). The convention is for normals to point out from the surface; normals
pointed the wrong way will lead to highly inaccurate results for the fields calculate in near
the surface.

Running:

cosy gmshparser.fox h

will give a description of the required parameters.


http://gmsh.info/

Chapter 2

The PISCS Code

2.1 Introduction

A detailed description of the theoretical frameworks that underly PISCS, along with the
relevant references, can be found in this dissertation.

2.2 Near-boundary Instabilities

The foundation of PISCS involves computing integrals of the Green’s function (for the Pois-

son equation),
1

G = mx =yl

(1)

or its derivative over the surface. When the surface is discretized this integral becomes a
sum, with each point on the surface weighted depending on the quadrature method chosen.
When the evaluation point (x) lies close to the surface, there are points (y;) from the
discretization for which the Green’s function (Eq. 1) is nearly singular. This is not an issue
when the full integral is computed. However, the error from computing a discrete density
for the quadrature is bounded by the derivative of G, thus the results will be unstable when
evaluating near the boundary. This can be seen in the results for evaluating the potential and
fields in a conducting sphere (Fig. 3.1). Near the boundary (radius of 10m), the instability
is clear.

One approach to resolve this instability is to form an expansion centered away from the
surface (in the stable region) and evaluate that expansion for points near the boundary, rather
than the direct quadrature sum. This approach has been called Quadrature by Expansion
(QBX), and has been shown to be quite effective for two dimensional cases. We have found


https://search.proquest.com/docview/2055781329
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that it can also be quite effective in the three dimensional case.The distance of the expansion
center (and the evaluation radius) from the surface will be a function of a characteristic
element size (typically an area or function of side lengths), element order, and order of the
expansion polynomial. The reason the expansion center and evaluation radius are not the
same is due to the competing nature of computational errors. The near-boundary instability
has already been discussed, however, error will also be introduced by the truncation of the
expansion polynomial, and will increase as a function of the distance from the expansion
center. Particularly when the discretization uses a few/low order elements, it is necessary
for the expansion center to be far from the surface, otherwise, the expansion doesn’t have
the desired accuracy. This means that as you move from the expansion center to the surface,
the truncation error initially grows before the near-boundary instability becomes significant.
Thus it is desirous to only evaluate the expansion for points close enough to the surface
that the boundary instability induced error (which grows without bound) is greater than the
truncation error.

Current implementation utilizes an adaptive QBX process, which calculates the expansion
center and evaluation radius based on the nature of the nearest surface element (size and
order) for each evaluation point (x). Current work is in process to further reduce the near
boundary instabillities.

2.2.1 Adaptive QBX

The expansion center (distance from the surface) ¢ is selected as a function of element order
N and the characterlistic length h of the nearest element. The characteristic length is given

by
h=+vV23A, (2)

where A is the element area (calculated from the Jacobian of the interpolation matrix). Eq. 2
assumes that the triangular elements are approximately equilateral (a reasonable assumption
if the mesh has been generated correctly). The expansion center radius is then given by

c=2vh. (3)

Here N represents the and the norm order (number of nodes on an edge) for the NVF
interpolation. The pre-factor (2 for linear surface elements) is chosen from studies with the
flat parametrization triangle, which found that the integral kernel is slowly varying over the
flat panel in 3D if the nearest distance to the target point is greater than the edge length of
the element.

The radius of evaluation of the expansion (r) is set to r = 0.75¢.



Chapter 3

PISCS Example

3.1 Introduction

A simple example is provided to serve as an introduction for PISCS. It sets up a perfect
conducting sphere (radius = 10m) with 1000 protons randomly arrayed inside, and with a
boundary potential of 10V under Dirichlet boundary conditions. The sphere is described by
80 constant (ie. flat, order = 1) elements. See Data File 1.3.1 for an example of how these
values are specified. The potentials and fields at each of the protons are specified in the
output files potentials and fields (located in the same directory as PISCS).

3.2 Contents

All of the files required to run this example are contained in the piscs_example.zip archive.
The contents are:

1. N=100.dat

2. N=1000.dat

3. parameters.dat

4. sphere_order=1.struct

5. sphere_order=2.struct

6. sphere_order=3.struct

7. tmp/

11
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The first two files are particle files whose name specifies the number of particles described.
Note, all the particles in file 1 are clustered around the center of the sphere, while those in
file 2 fill the entire sphere and are sampled from a uniform distribution in radius. File 3
is an example of the parameter file (see 1.3.1). Note that the relative file paths will need
to be changed if the files are moved to a different directory. Also, it may be necessary to
update the FMMCPP executable depending on the compiler used. The next three files are
structure files for a 10m radius sphere discretized into 80 triangular elements at the element
order specified in the file name. The last file is an empty folder which will be used to store
the temporary PISCS files (mostly for the FMM).

3.3 Running the Example

Extract the archive containing the example files. Set up PISCS and the FMMCPP executable
as described in section 1.2.

3.3.1 Basic Evaluation

Initially, no boundary refinement in included. By changing the particle species to ‘targets’
in the parameters.dat (1.3.1) we can compute the potentials and fields due simply to the
boundary, which provides a useful comparison to analytic results. By Gauss’ Law, since
there are no sources within the conducting sphere, the electric field should be uniformly
zero. Thus the electric potential must be constant and the same as the conditions on the
boundary (due to continuity).
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Figure 3.1: Plots of the output potentials (a) and fields (b) when the example is run for the
1%¢ order sphere using 1000 particles as targets and as macro-protons. In both plots, a red
line indicates the theoretical values when no charges are present.

Plotted in figure 3.1 are the resulting potentials (left) and electric field magnitudes (right)
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for both protons and targets. Since 1000 protons would not have a noticeable effect on the
results in this scale, they are treated as macro-particles each with a charge of 1 x 10% e. Also
plotted is a line (dark blue) specifying the theoretical values for targets (ie. 10V for the
potentials and OV /m for the fields). For the targets (red), the results are close to theoretical
values away from the surface. The protons (light blue) show large values near the center of
the sphere (as expected given the small distances between particles) and decreases toward
the boundary values as the radius increases (fulfilling the condition of continuity of the
potentials and fields for all » < 10m). The near-boundary instabilities are more noticeable
when targets are evaluated, but can also be seen for protons.

3.3.2 (QBX Refinement

Now we consider including near-boundary refinement via QBX. In this case, the adaptive
QBX parameters are ¢ =~ 5.4 and r =~ 4. Considering the plots in figure 3.1, this results in
the center falling away from the boundary instability, and the expansion evaluation radius
marking the approximate start of the instability.
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Figure 3.2: Plots of the output potentials (a) and fields (b) when the example is run for the
1% order sphere using 1000 particles as targets considering the effects of QBX. In both plots,
a red line indicates the theoretical values when no charges are present.

Figure 3.2 shows the resulting potentials (left) and fields (right) for target evaluation with
and without QBX refinement. Improvement (with reference to the analytic values) in the
fields in particular, and also the potentials to a lesser degree is apparent. The same can
also be said for the case of proton evaluation (shown in figure 3.3), both for the fields, and

the protons (which can be seen to better converge on the surface potential in the insert of
figure 3.3(a)).

The boundary instability is clearly not completely removed when considering the target
potentials (figure 3.2(a)). This is due primarily to the simplicity of the the boundary dis-
cretization. For cases with larger numbers of elements (O(1000) and higher element orders
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Figure 3.3: Plots of the output potentials (a) and fields (b) when the example is run for the
15" order sphere using 1000 particles as macro-protons considering the effects of QBX. In
both plots, a red line indicates the theoretical values when no charges are present.

(order > 1), this QBX implementation has been shown to reduce the boundary instability
errors to near the order of the numerical errors present in the bulk evaluation (ie. quadrature
error).
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