
PHAD Documentation

Revised September 29, 2021

Contents

1 Getting Started 1

1.1 Introduction . 1

1.2 Data Files . 1

1.2.1 Input Data Files . 1

1.2.2 Other Input Data Files . 2

1.2.3 Output Data Files . 4

1.3 Window and Relaunch Capabilities . 4

1.4 Running PHAD . 4

2 Overview of the PHAD Algorithm 6

2.1 PHAD Code Flowchart . 6

2.2 Equations of Motion . 7

2.3 Strang Splitting . 8

2.4 The Fast Multipole Method . 9

2.4.1 The Regular Long Range Integrator 10

2.4.2 The Modified Long Range Integrator 11

2.5 The Simò Integrator . 12

3 Memory and Subroutine Details 13

i

CONTENTS ii

3.1 Global Variables . 13

3.2 Function QSORT . 14

3.3 Function MERGE . 15

3.4 Function COMPARE . 16

List of Figures

2.1 Code flowchart . 6

3.1 The influence of the number of processors, number of particles, and the q
value on the memory required by PHAD code. 14

iii

List of Data Files

1.2.1 positions.ssv . 2

1.2.2 momenta.ssv . 2

1.2.3 masses.dat/charges.dat . 2

1.2.4 phad-mpi.input and phad-mpi.input.relaunch 3

iv

Chapter 1

Getting Started

1.1 Introduction

The Particles’ High-order Adaptive Dynamics (PHAD) is a novel collisional N -body method
for accurate and efficient simulations of charged particle beam dynamics written in COSYScript
for MSU COSY Infinity v9.2 and higher.. Modeling beam dynamics with PHAD achieves
an accuracy that is comparable to the direct methods, but with a computational time that
is proportional to N (number of particles) instead of N2 of the direct methods. In addition,
PHAD can preserve the symplecticity of the long-time scale simulations up to machine pre-
cision. The main components of PHAD algorithm are Strang splitting which separates the
forces to near and far forces and ensures symplecticity; the Fast Multipole Method (FMM)
that reduces the computational complexity of the pair-wise forces in the far region; and the
Simò integrator for an accurate time integration that can resolve all collisions in the near
region efficiently. An earlier version of PHAD utilized a Picard-Iteration based integrator
for the time stepping as described in this dissertation.

1.2 Data Files

There are three kinds of data files used in PHAD: the initial data files are those containing
inputs; the pass through data files are used to communicate between the COSY execution
and the C++ execution of the FMM; and the output data files are those containing outputs.

1.2.1 Input Data Files

The initial coordinates, masses, and charges of the particles are included in four data files.

1

http://vrws.de/napac2016/papers/tupob14.pdf#PAC'16
http://vrws.de/napac2016/papers/tupob14.pdf#PAC'16
https://commons.lib.niu.edu/handle/10843/20025

CHAPTER 1. GETTING STARTED 2

• File positions.ssv contains the initial positions of the particles.

x1 y1 z1
x2 y2 z2
x3 y3 z3
...

...
...

xN yN zN

Data File 1.2.1: positions.ssv

• File momenta.ssv contains the initial scaled momentum of the particles.

p̂x1 p̂y1 p̂z1
p̂x2 p̂y2 p̂z2
p̂x3 p̂y3 p̂z3
...

...
...

p̂xN
p̂yN p̂zN

Data File 1.2.2: momenta.ssv

• Files charges.dat and masses.dat contain the particles scaled charges ni and masses fi.

f1 /q1
f2 /q2
f3 /q3

...
fN /qN

Data File 1.2.3: masses.dat/charges.dat

1.2.2 Other Input Data Files

The file phad-mpi.input specifies many input parameters for the code such as the files’
names and the locations of the initial data and output data. An additional file, phad-
mpi.input.relaunch, is needed for the relaunch functionality (explained in Section1.3). This
file is identical to phad-mpi.input, but with the final entry set to ‘1’ instead of ‘0’ (Note,
when restarting PHAD, both files will be identical with the last entry set to ‘1’). An example
of these files is shown in 1.2.4.

CHAPTER 1. GETTING STARTED 3

tmp/ Location to store temporary FMM data files (outputpath)
sources.ssv Path and file name with initial particles’ positions (sourcefile)
input/charges.dat Path and file name with initial particles’ charges (chargefile)
10000 Number of particles (countsources)
targets.ssv Path and file name with targets’ locations for FMM (targetfile)
10000 Number of FMM target locations (counttargets)
60 Largest number of particles allowed in neighborhood (q)
./fmmcpp.intel Path and file name of FMM executable (fmmcpp program)
6 Order of FMM (fmm order)
0 Format of input files: 0 = asci, 1 = binary, 2 = cosy binary (binary input)
1 Switch for load balancing for FMM C++ data structure: 0 = no, 1 = yes

(load balance)
10000 Maximum number of boxes (max num of boxes)
input/masses.dat Path and file name with particles’ masses (massfile)
input/momenta.ssv Path and file name with initial particles’ momenta (momentafile)
10 Maximum allowed order for Simò (SIMO ORDER)
1E−10 Accuracy of Simò (SIMO ACCURACY)
1.75E−15 Minimum timestep size for Simò (DELTALIMIT)
10 Number of Simò time bins (BINS)
1 Type of binning in the Simo integrator: 0 = equal-width bins, 1 = equal

number of particles per bin (BINNINGTYPE)
0.5E−2 PHAD timestep size (timestepsize)
600 Total number of PHAD timesteps to perform (num of timesteps)
20 One output per this many timesteps (OUTPUTERESOLUTION)
−5E−4 Minimum horizontal window dimension (XMIN)
5E−4 Maximum horizontal window dimension (XMAX)
−5E−4 Minimum vertical window dimension (YMIN)
5E−4 Maximum vertical window dimension (YMAX)
0 Number of electrons for cooling applications; 0 = no cooling

(num of cool electrons)
0 Switch for relaunch: 0 = no relaunch, 1 = relaunching PHAD

(apprelaunch)

Data File 1.2.4: phad-mpi.input and phad-mpi.input.relaunch

CHAPTER 1. GETTING STARTED 4

1.2.3 Output Data Files

After each OUTPUTERESOLUTION number of timesteps, the code will output the par-
ticles’ information to the data files <variable> PHAD <timestep>.ssv. The <variable>
denotes the following: x, y, z, p̂x, p̂y, p̂z, f , n, and beta.

1.3 Window and Relaunch Capabilities

Charged particle beams travel within a transversely confined region (ie. the beam pipe of
the accelerator complex). If particles leave this region, they are no longer relevant to the
simulation and should be removed in order to improve the accuracy (and efficiency) of the
algorithm. PHAD defines a ‘window’ in the transverse space in which the simulation will be
performed. Any particles that leave the window at a timestep are removed from the simula-
tion, and their information is logged in the output files <variable> PHAD <timestep>.ssv
of the respective step. The parameters defining the window are set in the file phad-mpi.input.

PHAD is specifically designed to efficiently compute problems of large N accurately and
efficiently (such as electron cooling applications), so the assumption is that it will be run
in parallel on a high-performance computing (HPC) cluster. Job management systems on
some HPCs require the user to specify apriori the length of time the simulation will run.
Due to the adaptive nature of the Simò integrator and PHAD timesteps, timing information
cannot be known. Therefore, PHAD has a built in relaunch capability which allows the
user to restart the code from the last completed PHAD timestep using a flag in the file
phad-mpi.input. This flag is apprelaunch: 0 = no relaunch, 1 = relaunching PHAD.

1.4 Running PHAD

PHAD is written in COSYscript to be run in parallel using the MPI version of COSY Infinity.
COSY Infinity can be obtained after registering at the COSY website. The COSY Infinity
Programmer’s Manual details how to create the MPI version of COSY through the use of
the version utility. Some of these details are also covered in the NIU COSY User Guide.

After extracting phad.zip, the following files need to be included in the directory

1. phad.fox

2. COSY.bin

3. fmmcpp.zip

4. A directory called input containing input data files listed in Section1.2.1

http://www.bt.pa.msu.edu/index_cosy.htm
https://www.niu.edu/beam-physics-code/_pdf/niu-cosy-user-guide.pdf

CHAPTER 1. GETTING STARTED 5

5. A directory called output for resulted output data files described in Section1.2.3

6. phad-mpi.input and phad-mpi.input.relaunch files described in Section1.2.2

The COSY.bin file can be created using MPI COSY executable to execute the cosy.fox
file within the same directory. The fmmcpp.zip directory is used to build the FMM, after
extracting, by running the make command in this directory.

In most beam dynamics applications, the sources.ssv and targets.ssv are equivalent and can
be set to input/positions.ssv. Any external electromagnetic fields can be included in the
phad.fox file within the Simò integrator procedure.

Assuming the MPI COSY executable is ‘mpi cosy’, the following basic command can be used
to run PHAD in parallel

mpirun -np <number of processors> mpi cosy phad

However, PHAD is best to be run using a pbs script (the file run phad.pbs is included to
run PHAD on Gaea at NIU).

Chapter 2

Overview of the PHAD Algorithm

2.1 PHAD Code Flowchart

The following flowchart gives an outline of the major components of the code

FMM
Read

Unscaled
Data

Scaled
Data

Long
Range

Integrator

Scaled
Data

Simò
Integrator

Unscaled
Data

FMM
Scaled
Data

Modified
Long
Range

Integrator

Scaled
Data

Write
Unscaled

Data

Long
Range

Integrator

Scaled
Data

Are All

timesteps

Done?

Scaled
Data

Modified
Long
Range

Integrator

Scaled
Data

FMM
Unscaled

Data

Simò
Integrator

no

yes

Figure 2.1: Code flowchart

6

CHAPTER 2. OVERVIEW OF THE PHAD ALGORITHM 7

The Scaled Data that is passed between components is that described in Section2.2. The
Unscaled Data passed to the FMM has z coordinates multiplied by γ as also described in
Section2.2.

2.2 Equations of Motion

The equations of motion for a particle i of charge qi and mass mi can be written as

ẋi =
c (pxi

i + pyij + pzik)(
m2

i c
2 + p2xi

+ p2yi + p2zi
)1/2 (2.1)

and

ṗi = qi

 1

4πε0

N∑
j=1
j 6=i

qj ((xi − xj)i + (yi − yj)j + γ2(zi − zj)k)

γ [(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2
+ E + vi ×B

 , (2.2)

where γ is the Lorentz relativistic factor, c is the speed of light in vacuum, ε0 is the vacuum
permittivity, and E and B are the external electric and magnetic fields, respectively. The
derivation of these equations of motion is detailed in this dissertation.

Each equation of motion will be scaled to avoid numerical errors due to the small quantities

included in the simulations. This scaling will be denoted using the ·̂ notation. After scaling,
the equations of motion are given by

ẋi =
p̂xi

i + p̂yij + p̂zik(
f 2
i + p̂2xi

+ p̂2yi + p̂2zi
)1/2 , (2.3)

and

ˆ̇pi =
qni

mc2

 q

4πε0

N∑
j=1
j 6=i

nj ((xi − xj) i + (yi − yj) j + γ2 (zi − zj) k)

γ
[
(xi − xj)2 + (yi − yj)2 + γ2 (zi − zj)2

]3/2 + E + cv̂i ×B

 . (2.4)

Setting m to be the mass of a proton and q to be the elementary charge, the scaled variables
are defined as follow

t̂ = c t fi =
mi

m
ni =

qi
q

p̂xi
=

pxi

m c
p̂yi =

pyi
m c

p̂zi =
pzi
m c

x̃ =
x− xmin

Dzero
ỹ =

y − ymin

Dzero
z̃ =

z − zmin

Dzero

Ê =
E

m c
Ẽ = Dzero2E,

https://commons.lib.niu.edu/handle/10843/20025

CHAPTER 2. OVERVIEW OF THE PHAD ALGORITHM 8

where the ·̃ notation denotes a scaled variable to occur in the FMM. The FMM scales the
position space x to the unit cube. The variables xmin, ymin, and zmin are used to translate
the space such that there are no negative components to x, while the variable Dzero is used
to scale x such that no component of x is greater than 1. This scaling must be reversed
when converting the FMM calculated potentials/fields back to real space.

2.3 Strang Splitting

Defining the vector

Y = [x1 y1 z1 px1 py1 pz1 . . . xN yN zN pxN
pyN pzN]T

in R6N , the initial value problem (IVP) is described by{
Ẏ = F(Y, t)
Y(0) = Y0.

(2.5)

The function F in Eq.(2.5) is given by the right-hand sides of Eq.(2.3) and Eq.(2.4). Using
Strang splitting, the function F is split as F = F[1] + F[2]. Denoting the set of indexes of the
particles in the neighborhood of particle i by Si, the splitting of the equations of motion is
as follow

F̂
[1]
i (Ŷi, t̂) =



ẋ
[1]
i =

p̂xi
i + p̂yij + p̂zik(

f 2
i + p̂2xi

+ p̂2yi + p̂2zi
)1/2

ˆ̇p
[1]
i =

qni

mc2

 q

4πε0

∑
j∈Si
j 6=i

nj ((xi − xj)i + (yi − yj)j + γ2(zi − zj)k)

γ [(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2
+ E + cv̂i ×B

 ,

(2.6)

and

F̂
[2]
i (Ŷi, t̂) =


ẋ
[2]
i = 0

ˆ̇p
[2]
i =

qni

mc2
q

4πε0

∑
j /∈Si

nj ((xi − xj)i + (yi − yj)j + γ2(zi − zj)k)

γ [(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2
.

(2.7)

With the initial condition Ŷ(0) = Ŷ0, we will solve three IVP’s. First,

ˆ̇Y = F̂[2](Ŷ, t̂) Ŷ(0) = Ŷ0

at t = h/2 to get φ
[2]
h/2,1

. Then,

ˆ̇Y = F̂[1](Ŷ, t̂) Ŷ(0) = φ
[2]
h/2,1

(Ŷ0)

CHAPTER 2. OVERVIEW OF THE PHAD ALGORITHM 9

at t = h to get φ
[1]
h,1. Finally,

ˆ̇Y = F̂[2](Ŷ, t̂) y(0) = φ
[1]
h,1 ◦ φ

[2]
h/2,1

(Ŷ0)

to get φ
[2]
h/2,2

at t = h/2. Composing we get

Ŷ1 = S1
h(Ŷ0) = φ

[2]
h/2,2
◦ φ[1]

h,1 ◦ φ
[2]
h/2,1

(Ŷ0)

This process is repeated over n timesteps by solving multiple IVP’s, and we get the chain

φ
[2]
h/2,2n

◦φ[1]h,n◦φ
[2]
h/2,2n−1

◦φ[2]h/2,2n−2
◦φ[1]h,n−1◦φ

[2]
h/2,2n−3

◦· · ·◦φ[2]h/2,4
◦φ[1]h,2◦φ

[2]
h/2,3
◦φ[2]h/2,2

◦φ[1]h,1◦φ
[2]
h/2,1

(Ŷ0). (2.8)

In the code, the FMM is used to generate the solutions φ[2] and the Simò integrator is used
to generate the solutions φ[1]. Because the particle positions are not changed in Eq.(2.7),

the FMM can be ran once to compute pairs φ
[2]
h/2,2k

◦ φ[2]
h/2,2k+1

for 2 ≤ k ≤ n − 1 if care is

taken to add or subtract the contributions of particles between the sets Si(tk) and Si(tk + 1)
between timesteps.

2.4 The Fast Multipole Method

The FMM is an efficient hierarchical method to calculate the Coulomb effect of a discrete set
of charged particles N on a test charge at a particular location. The scalar electric potential
is given by

G(x, y, z) =
∑
j /∈Si

nj

[(x− xj)2 + (y − yj)2 + (z − zj)2]3/2
,

where (xk, yk, zk) are the coordinates of particles k = 1, 2, . . . , N . In the FMM, the function
G(x, y, z) is approximated by dividing the sum into a set of near and far evaluations. The
near evaluations can be computed exactly, and the far evaluations are represented as a sum
of multipole expansions. We employed a novel adaptive multilevel FMM in PHAD algorithm
which gives a computational complexity that scales asymptotically as O(N) and can treat
different non-uniform spatial distributions.

The FMM takes the coordinates (xk, yk, zk) of the particles from a data file. To handle the
relativistic gamma in PHAD, the coordinates (xk, yk, γzk) are stored in a data file and passed
to the FMM. Then, PHAD adapts the original FMM code to compute the expansion of

G(x, y, γz) =
∑
j /∈Si

nj

[(x− xj)2 + (y − yj)2 + (γz − γzj)2]3/2

=
∑
j /∈Si

nj

[(x− xj)2 + (y − yj)2 + γ2(z − zj)2]3/2

https://www.sciencedirect.com/science/article/abs/pii/S1007570419300012

CHAPTER 2. OVERVIEW OF THE PHAD ALGORITHM 10

needed for computing the right hand side of Eq.(2.7).

There are then two separate “long range” integrators contained within one procedure in
PHAD code. The regular one is for the odd φ

[2]
h/2,2k+1

and the modified is for even φ
[2]
h/2,2k

.

Most of the long range integrations are computed following a sequence starting with the
FMM, then the modified long range integrator, and finally the regular long range integrator.
The positions remain unchanged for these integrators. However, the neighborhood containing
particle i, Si, is different for the modified and regular integrators. The Si for the regular
long range integrator are defined by the FMM on the positions after to the preceding Simò
integrator (the previous FMM). The Si for the modified long range integrator are defined
by the FMM on the positions before the preceding Simò integrator (the FMM before the
previous FMM).

The following Eq.(2.9) is a colored version of Eq.(2.8) that shows red regular long range inte-
grations, green Simò integrations, and blue modified long range integrations. Each red/blue
pair is computed using one FMM computation.

φ
[2]
h/2,2n

◦φ[1]h,n◦φ
[2]
h/2,2n−1

◦φ[2]h/2,2n−2
◦φ[1]h,n−1◦φ

[2]
h/2,2n−3

◦· · ·◦φ[2]h/2,4
◦φ[1]h,2◦φ

[2]
h/2,3
◦φ[2]h/2,2

◦φ[1]h,1◦φ
[2]
h/2,1

(Y0) (2.9)

2.4.1 The Regular Long Range Integrator

The regular long range integrator uses the local expansion for the field created by the particles
outside a particular particle’s neighborhood (Si), and gives a value for the electric field
contribution from these particles. It computes the steps in the composition chain involving
φ
[2]
h/2,2k−1 in solving the differential equation Eq.(2.7).

The three components of the position in Eq.(2.7) are zeroes, so there is no change to the
particles positions. This implies that the last three components can be integrated directly.
Viewing these equations as

ˆ̇Y = C Ŷ(0) = Ŷ0,

they have the exact solution Ŷ0 + Ct̂. The solution to Eq.(2.7) with the initial condition
Ŷi0 = [x0i y

0
i z

0
i p̂

0
xi
p̂0yi p̂

0
zi

]T and with the FMM scaling is

CHAPTER 2. OVERVIEW OF THE PHAD ALGORITHM 11

Ŷi(h) =



x̃0i

ỹ0i

z̃0i

p̂0xi
+ h

q2 ni

4πε0 m c2 Dzero2

∑
j /∈Si

nj(x̃i − x̃j)
γ[(x̃i − x̃j)2 + (ỹi − ỹj)2 + γ2(z̃i − z̃j)2]3/2



p̂0yi + h
q2 ni

4πε0 m c2 Dzero2

∑
j /∈Si

nj(ỹi − ỹj)
γ[(x̃i − x̃j)2 + (ỹi − ỹj)2 + γ2(z̃i − z̃j)2]3/2



p̂0zi + h
q2 ni

4πε0 m c2 Dzero2

∑
j /∈Si

njγ
2(z̃i − z̃j)

γ[(x̃i − x̃j)2 + (ỹi − ỹj)2 + γ2(z̃i − z̃j)2]3/2





, (2.10)

The sums in the square brackets of the last three components of Eq.(2.10) are computed in
the FMM as an electric field. We will denote this as Ẽi(x̃i, ỹi, z̃i) = [Ẽxi

Ẽyi Ẽzi] to get

Ŷi(h) =



x̃0i

ỹ0i

z̃0i

p̂0xi
+ h

q2 ni

4πε0 m c2 Dzero2 Ẽxi

p̂0yi + h
q2 ni

4πε0 m c2 Dzero2 Ẽyi

p̂0zi + h
q2 ni

4πε0 m c2 Dzero2 Ẽzi



. (2.11)

2.4.2 The Modified Long Range Integrator

The modified long range integrator uses the neighborhoods from the FMM based on the
positions before the Simò integrator. Thus, the sets Si are based on the previous positions.
In the overall code, each modified long range integration is represented by φ

[2]
h/2,2k

as a solution

to Eq.(2.7) and the computations are made in terms of the current positions S∗i . We then
need the two sets Si\S∗i and S∗i \Si which are found using the COMPARE function (see
Section3.4). We will use that

Sc
i =

(
S∗i \Si

)
∪
(
S∗i

c\Si

)
=
(
S∗i \Si

)
∪
(
S∗i

c\(Si\S∗i)
)
,

CHAPTER 2. OVERVIEW OF THE PHAD ALGORITHM 12

such that the solution becomes

Ŷi(h) =



x0i

y0i

z0i

p̂0xi
+ h

q2

4πε0 m c2
ni

Ẽ∗x +
∑

j∈S∗
i \Si

nj(xi − xj)
γ[(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2

−
∑

j∈Si\S∗
i

nj(xi − xj)
γ[(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2



p̂0yi + h
q2

4πε0 m c2
ni

Ẽ∗y +
∑

j∈S∗
i \Si

nj(yi − yj)
γ[(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2

−
∑

j∈Si\S∗
i

nj(yi − yj)
γ[(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2



p̂0zi + h
q2

4πε0 m c2
ni

Ẽ∗z +
∑

j∈S∗
i \Si

njγ(zi − zj)
[(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2

−
∑

j∈Si\S∗
i

njγ(zi − zj)
[(xi − xj)2 + (yi − yj)2 + γ2(zi − zj)2]3/2





(2.12)

2.5 The Simò Integrator

The Simò integrator is used in PHAD algorithm for an accurate and efficient time stepping
by numerically solving Eq.(2.6). All collisions and close encounters are captured by the Simò
integrator with accuracy up to machine precision, where the external electromagnetic fields
and relativistic fields are also considered. In the overall PHAD code description, we denoted
the Simò integrator solution at k steps as φ

[1]
h,k.

https://epubs.siam.org/doi/abs/10.1137/18M1173071

Chapter 3

Memory and Subroutine Details

3.1 Global Variables

The main global variables used to set storage in the code and can influence the memory
required for the run are the following

NP number of processors

NUM OF PARTICLES number of sources

NUM OF TARGETS number of targets

FMM PROC BALANCE EST =2, estimate of the factor of the largest number of neigh-
bors, sources per processor to what would be balanced

MAX NUM OF BOXES max. number of boxes

PROC MAX NUM OF BOXES max. number of boxes per processor

q largest q value for FMM

DLeafNodesPrev

NM1 number of monomials for DA vectors

NBDT

FMM ORDER order of the FMM

NBCF

MAX FMM UP

13

CHAPTER 3. MEMORY AND SUBROUTINE DETAILS 14

MAX FMM DOWN

SIMO ORDER max. allowed order of the Simò integrator

BINS number of bins used in the Simò integrator

As an example, the effect of the NP, NUM OF PARTICLES, and q on the memory is demon-
strated in Fig.3.1. The memory of the MPI COSY executable can be adjusted by modifying

(a) Memory vs. NP (b) Memory vs. q

Figure 3.1: The influence of the number of processors, number of particles, and the q value
on the memory required by PHAD code.

the value of LMEM in cosy source files. This can be performed manually at each instant
of each source file, or can be changed using the cosyresize utility as explained in the NIU
COSY User Guide. Note that the LMEM value cannot exceed 2 GB.

3.2 Function QSORT

The function QSORT orders the components of a vector from smallest to largest. The vector
itself is the only input. The sorting is done by choosing a pivot from the vector components
and putting the components less than the pivot the left of the pivot. It repeats this process
on the components to the left of the vector until there is only one component to the left
of the current pivot. Then, it changes the vector components under consideration to those
between the previous RIGHT values. This continues until there are no more such vectors
with lengths more than one and the vector is sorted.

Example

In this example, we will show how the function sorts the vector

[8 1 5 4 9 7 3 6 2].

https://www.niu.edu/beam-physics-code/_pdf/niu-cosy-user-guide.pdf
https://www.niu.edu/beam-physics-code/_pdf/niu-cosy-user-guide.pdf

CHAPTER 3. MEMORY AND SUBROUTINE DETAILS 15

Initially, LEFT is set to 8 and RIGHT is set to 2. The pivot is the center (odd length vector)
or “right of center” (even length vector), here it is the center 9. Parenthesis are employed
to show the current values of LEFT and RIGHT. A vertical line, | to the left of a component,
denotes a previous RIGHT values. Once a component is in its final place it is put in blue.[(

8 1 5 4 9 7 3 6 2
)]

[(
8 1 5 4 7 3 6 2

)
|9
]

[(
1 5 4 3 6 2

)
|7 8 |9

]
[(

1 2
)
|3 5 4 6 |7 8 |9

]
[
1 2 |3

(
5 4 6

)
|7 8 |9

]
[
1 2 |3 |4 |

(
5 6
)
|7 8 |9

]

3.3 Function MERGE

The function merge joins two ordered vectors into a single ordered vector. It takes the two
ordered vectors as input and outputs a single ordered vector.

Example

In this example, we will join the two vectors [1 4 5 7] and [2 3 6 8 9].

Sorted vector 1 Sorted vector 2 Merged vector

[1 4 5 7] [2 3 6 8 9] −→ [1]

[4 5 7] [2 3 6 8 9] −→ [1 2]

[4 5 7] [3 6 8 9] −→ [1 2 3]

[4 5 7] [6 8 9] −→ [1 2 3 4]

[5 7] [6 8 9] −→ [1 2 3 4 5]

[7] [6 8 9] −→ [1 2 3 4 5 6]

[7] [8 9] −→ [1 2 3 4 5 6 7]

[] [8 9] −→ [1 2 3 4 5 6 7 8 9]

Once one of the vectors is empty, as is the case on the last line, the elements in the nonempty
vector are appended to the merged vector.

CHAPTER 3. MEMORY AND SUBROUTINE DETAILS 16

3.4 Function COMPARE

The COMPARE function compares two ordered lists [A] and [B] and finds [A\B] and
[B\A]. Its purpose within the code is to compare the sets Si−1 and Si within the modified
long range integrator. It takes two vectors containing the sorted elements of A and B and
returns two vectors with sorted vectors containing A\B and B\A. Within the procedure,
a variable CHECK stores the smallest remaining value in A. If this value is smaller than the
smallest remaining value in B, then CHECK is placed in A\B. If the smallest value of B is
smaller than CHECK, the smallest value of B is placed in B\A. When the CHECK is equal to
the smallest value in B, CHECK is reassigned to the next element of A and nothing is added
to A\B nor B\A. Once all elements of either A or B have been exhausted, what remains
remains of B is placed in B\A or the remainder of A is placed in A\B.

Example

For this example, we will consider the vectors [1 2 6 8] and [2 4 8 9]. At each step the
smallest elements of the sets are compared. When both elements are equal they are in red
and discarded. When the smallest element of A is less than the smallest element of B it is
colored blue and put into A\B. When the smallest element of B is less than the smallest
element of A, it is colored brown and placed into B\A.

A [1 2 6 8]
B [2 4 8 9]

A\B = []
B\A = []

−→

[2 6 8]
[2 4 8 9]
A\B = [1]
B\A = []

[6 8]
[4 8 9]
A\B = [1]
B\A = []

−→

[6 8]
[8 9]

A\B = [1]
B\A = [4]

[8]
[8 9]

A\B = [1 6]
B\A = [4]

−→

[]
[9]

A\B = [1 6]
B\A = [4]

A\B = [1 6] B\A = [4 9]

	Getting Started
	Introduction
	Data Files
	Input Data Files
	Other Input Data Files
	Output Data Files

	Window and Relaunch Capabilities
	Running PHAD

	Overview of the PHAD Algorithm
	PHAD Code Flowchart
	Equations of Motion
	Strang Splitting
	The Fast Multipole Method
	The Regular Long Range Integrator
	The Modified Long Range Integrator

	The Simò Integrator

	Memory and Subroutine Details
	Global Variables
	Function QSORT
	Function MERGE
	Function COMPARE

