Overview

- Why present your research?
- Poster/Oral Presentation Overview
- Poster “Do’s” & “Don’ts”
- Examples of Posters
- Oral Presentation “Do’s” & “Don’ts”
- Final Thoughts
Why present your research?

POSTER
• Provide an overview of your project
• Presentation at a:
 – Research conference
 – Workshop
 – Poster session
• Visual aid to go with short presentation

ORAL PRESENTATION
• Provide a more in-depth overview of your project
• Presentation at a:
 – Research conference
 – Workshop
• Talking points to go with medium length presentation
Poster overview

- Provide overview of project
- Share your methods, step-by-step
- Present your findings/results
 - Graphs, pictures, charts, etc
- Provide short conclusion(s) and future directions
- Acknowledge those that helped you
 - Mentor, department/program (e.g., Research Rookies)
 - Funding
- Catch the eye of people passing by
Oral Presentation Overview

• Provide overview of project
• Intro/Background/Importance
• Share your methods, step-by-step
• Present your findings/results
 – Graphs, pictures, charts, etc
 – Room for more images, etc.
• Provide more in-depth conclusion(s) and future directions
• Acknowledge those that helped you
 – Mentor, department/program (e.g., Research Rookies)
 – Funding
• Expansion from a traditional poster
The Shape of a Presentation

- Broad, narrow, then broad again

- Intro/Background
- Significance
- Research Question
- Methods
- Results
- Conclusion, Discussion, & Future Directions
Requirements

POSTER
• 32”x40” (URAD required size)
• Submitted to Creative Services by Monday, April 11, 2016
• NIU institutional logo

ORAL PRESENTATION
• 15 minutes
 – 10-12 minutes speech
 – 3-5 minutes Q&A
• PowerPoint or Prezi
Title (Poster)

- At least 2” wide (120-150 font, if possible)
- San serif font (e.g., Arial)
- Two lines or less
- Centered or left-justified
- Only lead letter, proper nouns, and word after colon are capitalized (depending on field)
- Author(s) & institution underneath
The impact of the number of subjects for atlas-based automatic segmentation

J L Ducote, V Sehgal, J Wong, M Al-Ghazal

Department of Radiation Oncology, University of California Irvine, Orange, CA

Abstract

Purpose: To determine the impact of atlas size on the performance of atlas-based automatic segmentation (ABAS) in delineation of organs at risk for adaptive radiation therapy.

Methods: A total of 25 patients who had undergone intensity-modulated radiation therapy for various head and neck cancers were retrospectively selected for inclusion in a library to be used for ABAS with the MIM VISTA software package (MIM Software, Cleveland, OH). Treatment planning computed tomography (CT) scans and subsequent organ at risk (OAR) contours generated as part of the treatment planning process for these patients were added to the library. This library of 25 patients was then successively pruned to generate five atlases with 25, 20, 15, 10, and 5 patient subjects, respectively. Atlas-based segmentation was performed on 10 retrospectively selected treatment planning CT scans to automatically generate contours for the right and left parotid glands and brainstem. These were compared to the contours manually delineated by a physician, JW, who was blinded to the ABAS results. Dice similarity coefficients (DSC) were calculated and analyzed as a function of atlas subject sizes for brainstem and parotid contours. DSC values were calculated as follows:

DSC(κ, Y) = 2X / (X + Y)

Where X and Y represent the manually drawn contour and the ABAS generated contour, respectively, and X and Y represents the intersection of X and Y. A DSC value of 1 represents perfect overlap.

Results

The strengths of the linear fits were observed to be only weakly correlated with the number of subjects in each atlas. Also, it was observed during patient subject selection that the computer algorithm would often repeatedly select the same patient as the best match for contour adaptation. Given that the performance as measured by the similarity coefficients was relatively insensitive to atlas size, the data suggested that careful selection of a small number of atlas subjects may be of benefit in reducing the time needed to perform ABAS. The data also suggest other methods of improving ABAS performance are warranted to take advantage of a larger number of available subjects in an atlas. One option being investigated in our department is the selection of more than a single subject for contour adaptation with the union of contours generated from the top several atlas subjects being expected to improve the overall similarity coefficient values.

Conclusion

For the subjects selected in this study, the performance of ABAS was fairly insensitive to atlas size. Little to no additional benefit was observed in generating atlases with a greater number of subjects. Furthermore, during ABAS some patient subjects in an atlas were repeatedly selected as the closest match, implying that the adoption of a small number of patients for atlas generation may be of benefit when using ABAS for select populations.

References

Contact Information

Justin Ducote, Ph.D.
UC Irvine Medical Center
Chao Family Cancer Center
Department of Radiology, Oncology
101 The City Drive S., Bldg 23
Orange, CA 92868
E: jducote@uci.edu
F: 714.456.9072
F: 714.455.7110
Abstract (Poster)

• Can include your Abstract at beginning
 – Should match what is submitted to the booklet
 – Some disciplines DO NOT put abstract on poster, check with your mentor
The impact of the number of subjects for atlas-based automatic segmentation

J L Ducote, V Sehgal, J Wong, M Al-Ghazi

Department of Radiation Oncology, University of California Irvine, Orange, CA

Abstract

Purpose: To determine the impact of atlas size on the performance of atlas-based automatic segmentation (ABAS) in delineation of organs at risk for adaptive radiation therapy.

Methods: A total of 25 patients who had undergone intensity-modulated radiation therapy for various head and neck cancers were retrospectively selected for inclusion in a library to be used for ABAS with the MINC (software package from Brown University, Providence, RI). Treatment planning computed tomography (CT) scans and subsequent organ at risk (OAR) contours generated as part of the treatment planning process for these patients were added to the library. The library of 25 patients was then successively pruned to generate 5 atlas sizes with 25, 20, 15, 10, and 5 patient subjects respectively. Atlas-based segmentation was performed on 10 retrospectively selected treatment planning CT scans to automatically generate right and left parotid gland and brainstem contours. Those planning CT scans belonging to a unique set of 10 patient subjects different from the ones used for generating the atlases. One physician (JW) who was blinded to the ABAS results, manually delineated gold-standard contours for the right and left parotid gland and brainstem. Dice similarity coefficients (DSC) were calculated and analyzed as a function of atlas subject size for brainstem and parotid contours.

Results: The strengths of the linear fits were observed to be only weakly correlated with the number of subjects in each atlas. Also, it was observed during patient selection that the computer algorithm would often repetitively select the same patient as the best match for contour adaptation. Given that the performance as measured by the similarity coefficients was relatively insensitive to atlas size, the data suggest that careful selection of a small number of atlas subjects may be beneficial in reducing the time needed to perform ABAS. This also suggests that other methods of improving ABAS performance are warranted to take advantage of a larger number of available subjects in an atlas. One option being investigated in our department is the selection of more than one subject for contour adaptation with the union of contours generated from the top several subject-atlas matches being expected to improve the overall similarity coefficient values.

Introduction

Increasing sophistication of radiation therapy plans require precise methods of target and organ at risk (OAR) delineation and time-consuming resource intensive. Atlas-based automatic segmentation (ABAS) has the potential to facilitate this process and offer the possibility to improve efficiency as well as reduce inter- and intra-individual variations in delineated contours. This study was designed to determine the number of subject subjects needed to achieve high conformity and confidence in the performance of ABAS.

Methods

OAR contours and underlying CT scans for a total of 25 head and neck cancer patients were added to a library to be used for ABAS. This library of 25 patients was then successively pruned to generate 5 atlases with 25, 20, 15, 10, and 5 patient subjects, respectively. Atlas-based segmentation was performed on 10 retrospectively selected planning CT scans to automatically generate contours for the right and left parotid glands and brainstem. These were compared to the contours manually delineated by a physician, JW, who was blinded to the ABAS results. Dice similarity coefficients (DSC) were calculated and analyzed as a function of atlas subject size for brainstem and parotid contours.

Results

The strengths of the linear fits were observed to be only weakly correlated with the number of subjects in each atlas. Also, it was observed during patient selection that the computer algorithm would often repetitively select the same patient as the best match for contour adaptation. Given that the performance as measured by the similarity coefficients was relatively insensitive to atlas size, the data suggest that careful selection of a small number of atlas subjects may be beneficial in reducing the time needed to perform ABAS. This also suggests that other methods of improving ABAS performance are warranted to take advantage of a larger number of available subjects in an atlas. One option being investigated in our department is the selection of more than one subject for contour adaptation with the union of contours generated from the top several subject-atlas matches being expected to improve the overall similarity coefficient values.

Discussion

For the sizes selected in this study, the performance of ABAS was fairly insensitive to atlas size. Little to no additional benefit was observed in generating atlases with a larger number of subjects. Furthermore, during ABAS, more than one patient subject in an atlas were repetitively selected as the closest match, implying that the adoption of a small number of patients for atlas generation may be beneficial when using ABAS for selected populations.

References

Contact Information

Justin Ducote, Ph.D.
Cleveland Clinic
Department of Radiation Oncology
1001 East 95th Street
Cleveland, OH 44106

T: 216-445-9000
F: 216-445-1770
E: ducotej@ccf.org
• Provides an overview of what your project entails
• Abstract and Intro/Background sections combined should not take up more than 1 column
Intro/Background (Oral Presentation)

- Provides an overview of what your project entails
- Addresses the gap in the literature
- Why are you conducting your research?
Methods

• Provide an overview of how you conducted your research
• Should be understood by an expert in your field as well as someone with no prior experience
• Might include images/diagrams
The impact of the number of subjects for atlas-based automatic segmentation

J L Ducote, V Sehgal, J Wong, M Al-Ghazi

Department of Radiation Oncology, University of California, Irvine, Orange, CA

Abstract

Purpose: To determine the impact of atlas size on the performance of atlas-based automatic segmentation (ABAS) in delineation of organs at risk for adaptive radiation therapy.

Methods: A total of 25 patients who had undergone intensity-modulated radiation therapy for various head and neck cancers were retrospectively selected for inclusion in a library to be used for ABASs with the MIM Vista software package (version 5.2, MIM Software, Cleveland, OH). Treatment planning computed tomography (CT) scans and subsequent organ at risk (OAR) contours generated as part of the treatment planning process for these patients were added to the library. This library of 25 patients was then successively pruned, at random, to generate five atlases with 25, 20, 15, 10, and 5 patient subjects, respectively. Atlas-based segmentation was performed on 10 retrospectively selected planning treatment CT scans to automatically generate contours for the right and left parotid glands and brainstem contoured. These planning CT scans belonged to a unique set of 10 patient subjects different from the ones used for generating the atlases. One physician (JW), who was blinded to the ABAS results, manually delineated gold-standard contours for the right and left parotid glands and brainstem. Dice similarity coefficients were calculated and analyzed as a function of atlas subject size.

Results: For the atlas size selected in this study, the performance of ABAS was relatively insensitive to atlas size. Furthermore, some patient subjects were repeatedly selected implying that the adoption of a single standard patient for ABAS may be of benefit.

Conclusions: Our preliminary results indicate that the performance of the atlas-based segmentation module in MIM Vista Version 5.2 for the organs studied here may be relatively insensitive to the atlas size.

Introduction

Increasing sophistication of radiotherapy treatment plans require precise methods of target and organ at risk (OAR) delineation and is inherently resource intensive. Atlas-based automatic segmentation (ABAS) has the potential to facilitate this process and offers the possibility to improve efficiency as well as reduce inter- and intra-observer variations in delineated contours. [1][2] To this end we have evaluated the ABAS capabilities of the MIM Vista software package - version 5.2 (MIM Software, Cleveland, OH). In the current study we attempted to determine the optimal number of subjects needed to achieve high conformity and confidence in the performance of ABAS.

Fig. 1 A comparison of physician drawn contours (red) and those generated by ABAS (yellow). Contour agreement is shown in shaded blue.

Fig. 2 Strength of Dice similarity coefficients as a function of atlas size for brainstem contours. The data were related by $Y = 0.01X + 0.66$ ($r^2 = 0.036$). The average DSC value across the range was approximately 0.86.

Fig. 3 Strength of Dice similarity coefficients as a function of atlas size for parotid gland contours. The data were related by $Y = 0.01X + 0.65$ ($r^2 = 0.035$). The average DSC value across the range was approximately 0.65.

References

Contact Information

Justin Ducote, Ph.D.
MILCA Research Fellow
1U Irvine Medical Center
Chao Family Cancer Center
Department of Radiation Oncology
101 The City, Irvine, CA 92697
T: 714.456.8072
F: 714.456.7170
E: jducote@uci.edu
Results/Findings

• Highlights what your research shows
• Include graphs, charts, and images when possible
• Most time spent discussing results/findings during your presentation
• Expect lots of questions here (is this what you expected to find? Etc.)
The impact of the number of subjects for atlas-based automatic segmentation

J L Ducote, V Sehgal, J Wong, M Al-Ghazi
Department of Radiation Oncology, University of California Irvine, Orange, CA

Abstract

Purpose: To determine the impact of atlas size on the performance of atlas-based automatic segmentation (ABAS) in delineation of organs at risk for adaptive radiation therapy.

Methods: A total of 25 patients who had undergone intensity-modulated radiation therapy for various head and neck cancers were retrospectively selected for inclusion in a library to be used for ABAS with the MIM VISTA software package (MIM Software, Cleveland OH). Treatment planning was performed by a radiation oncologist, and subsequently, the organ at risk (OAR) contours were generated as part of the treatment planning process for these patients. This library of 25 patients was then successively pruned to generate a library of sizes 25, 20, 15, 10, and 5 patient subjects respectively. Atlas based segmentation was performed on 10 retrospectively selected treatment planning CT scans to automatically generate contours for the right and left parotid glands and brainstem. These planning CT scans belonged to a unique set of 10 patient subjects different from the ones used for generating the libraries. One physician, who was blinded to the ABAS results, manually delineated gold-standard contours for the right and left parotid glands and brainstem. Dice similarity coefficients were calculated and analyzed as a function of atlas subject size.

Results: For the atlas size selected in this study, the performance of ABAS was relatively insensitive to atlas size. Furthermore, some patient subjects were repeatedly selected implying that the adoption of a single standard patient for ABAS may be of benefit.

Conclusions: Our preliminary results indicate that the performance of the atlas-based segmentation module in MIM VISTA Version 5.2 for the organs studied here may be relatively insensitive to the atlas size.

Introduction

Increasing sophistication of radiation therapy treatment plans require precise methods of target and organ at risk (OAR) delineation and is inherently resource intensive. Atlas-based automatic segmentation (ABAS) has the potential to facilitate this process and offers the possibility to improve efficiency as well as reduce inter and intra-individual variations in delineated contours [1][2]. To this end we have evaluated the ABAS capabilities of the MIM Vista software package - version 5.2 (MIM Software, Cleveland, OH). In this study we attempted to determine the optimal number of subjects needed to achieve high conformity and confidence in the performance of ABAS.

Fig 1: Comparison of physician-drawn manual contours (red) and those generated by ABAS (yellow). Contour agreement is shown in shaded blue.

Fig 2: Strength of Dice similarity coefficient as a function of atlas subject size for the brainstem and parotid gland sites. The data were related by $Y = 0.01X + 0.53$ ($p < 0.01$). The average DSC value across the range was approximately 0.96.

Fig 3: Strength of Dice similarity coefficient as a function of atlas subject size for parotid gland contours. The data were related by $Y = 0.01X + 0.64$ ($p < 0.01$). The average DSC value across the range was approximately 0.85.

References

1. Isambert, F.; Dinh, F.; Bidaud, O.; Czerniakow, P.; Biaudet, G.; Malouard, D.; Lefebvre, Radiother Oncology 87, 93-99 (2006)

Contact Information

Justin Ducote, Ph.D.
Phone: 714.456.9572
Fax: 714.456.7170
Email: ducotej@uci.edu

101 East Medical Center
Chao Family Cancer Center
Department of Radiation Oncology
145 The City Drive S., Ste. 200
Orange, CA 92868
Discussion and/or Conclusion

- So what?
- Wraps up your findings
- Provides ideas for future research you might conduct
- The final thought you’re leaving the viewer with
The impact of the number of subjects for atlas-based automatic segmentation

J L Ducote, V Sehgal, J Wong, M Al-Ghazy
Department of Radiation Oncology, University of California Irvine, Orange, CA

Abstract
Purpose: To determine the impact of atlas size on the performance of atlas-based automatic segmentation (ABAS) in delineation of organs at risk for adaptive radiation therapy.

Methods: A total of 25 patients who had undergone intensity-modulated radiation therapy for various head and neck cancers were retrospectively selected for inclusion in a library to be used for ABAS with the MIM VISTA software package. Treatment planning computed tomography (CT) scans and subsequent organ at risk (OAR) contours generated as part of the treatment planning process for these patients were included in the library. This library of 25 patients was then successively pruned to generate five atlases with 25, 20, 15, 10, and 5 patient subjects, respectively. Atlas-based segmentation was performed on 10 retrospectively selected planning CT scans to automatically generate contours for the right and left parotid glands and brainstem contours. These planning CT scans belonged to a unique set of 10 patient subjects different from the ones used for generating the atlases. OAR physician (29), who was blinded to the ABAS results, manually delineated gold standard contours for the right and left parotid glands and brainstem. Dice similarity coefficients were calculated and analyzed as a function of atlas subject size for brainstem and parotid gland contours.

Results: The strengths of the linear fits were observed to be only weakly correlated with the number of subjects in each atlas. Also, it was observed during patient subject selection that the computer algorithm would often repeatedly select the same patient as the best match for contour adaptation. Given that the performance as measured by the similarity coefficients was relatively insensitive to atlas size, the data suggest that careful selection of a small number of atlas subjects may be of benefit in reducing the time needed to perform ABAS. The data also suggest other methods of improving ABAS performance are warranted to take advantage of a larger number of available subjects in an atlas. One option being investigated in our department is the selection of more than a single subject for contour adaptation with the union of contours generated from the top several subject atlas matches being expected to improve the overall similarity coefficient values.

Conclusion: For the sites selected in this study, the performance of ABAS was relatively insensitive to atlas size. Little to no additional benefit was observed in generating atlases with a greater number of subjects. Furthermore, during ABAS some patient subjects in an atlas were repeatedly selected as the closest match, implying that the adoption of a small number of patients for atlas generation may be of benefit when using ABAS for select populations.

References

Contact Information
Justin Ducote, Ph.D.
UCI Health
101 The City Drive S, Bldg 20
Orange, CA 92868
T: 714.456.8072
F: 714.456.7170
E: jducote@uci.edu
References & Acknowledgements

• References:
 – Any references cited on the poster/presentation
 – Use standard citation used in your field

• Acknowledgements (IMPORTANT)
 – Your mentor
 – The program/department sponsoring your research (ex: Research Rookies; Undergraduate Research Apprenticeship Program)
 – Funding
How Online Social Media and Networks Are Changing Scholarly Practice
Anatoliy Gruzd (gruzu@dal.ca) & Kathleen Staves (kathleenstaves@dal.ca)
School of Information Management, Dalhousie University Social Media Lab, Halifax, Nova Scotia, Canada

Introduction
Scholars are increasingly using online social media (OSM) technologies to communicate, conduct research, and disseminate information about themselves and their work. However, there is very little hard data on if, why, and how scholars are using these new tools.

This poster presents our ongoing research to answer these questions and discover the role that OSM currently play within the scholarly community and its effects on scholars’ careers.

Method
- A comprehensive literature review
- 21 semi-structured interviews with scholars in Library and Information Science
- 38 face-to-face interviews were conducted during the 2010 ASIS&T Annual Conference, and 13 interviews conducted remotely over the phone

Results
Reasons for Use or Non-Use of OSM Tools by Scholars

<table>
<thead>
<tr>
<th>Users</th>
<th>Non-Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>As part of a research project</td>
<td>Time consuming & information overload</td>
</tr>
<tr>
<td>To stay up to date in their field</td>
<td>Risk of non peer reviewed information</td>
</tr>
<tr>
<td>Communication and collaboration with colleagues, the public, students, etc.</td>
<td>Concern about loss of intellectual content & privacy</td>
</tr>
</tbody>
</table>

To create a sense of community for a research group
- Colleagues aren’t using OSM, therefore there’s no reason to use it
- More convenient than using print resources for research and communication
- Institutional IT departments do not provide enough support

Great personal information management resources
- Concern about sites’ profiling from users

To find interesting information outside of their field
- Scholars should not have to promote their own work

Although making new connections was not a benefit cited by users, this possibility was examined in an interview question and found to be a common occurrence for scholars using OSM tools.

Common Online Social Media Tools
- Twitter
- Zotero
- Google Docs
- MediaWiki

OSM & Tenure and Promotion

- None of the scholars interviewed worked for an institution that currently recognizes OSM publications as part of their tenure review and promotion process.
- The majority of interviewees agreed that OSM publications should eventually be considered, as long as there is a way to ensure that they contain relevant peer-reviewed scholarly content.
- Of the respondents who believe that OSM publications should be considered, many felt that it should count toward the service component of the tenure/promotion process.

Conclusions
- Online social media tools are quickly becoming an integral part of scholarly practices.
- Many earlier studies investigating scholars’ use of these tools were often cited the need to communicate with peers as the main reason behind scholars’ use of any social media tool.
- Our study has shown that there are many more reasons scholars choose to use these tools and that their dependence and usage of OSM tools is increasing.
- With their growing ubiquity and high adoption rate among scholars, it will be interesting to see how the presence and usage of OSM tools will affect the ways scholars disseminate information and research results.

References

Acknowledgements
We would like to thank the many volunteers who agreed to be interviewed for our survey and for the input from the other members of the Dalhousie University Social Media Lab such as Philip Mai, Amanda Wilk and Sophie Doron. Funding for this project was provided by the Social Sciences and Humanities Research Council (SSHRC) of Canada.

For Further Information
More information on this and related projects can be found at www.SocialMediaLab.ca
1. Use san serif font (e.g. Arial) for Title and Headings
2. Recommend a plain, solid-color background
3. 30-40% empty space
4. Use charts, images, and graphs in place of words when possible
5. Use high quality images
6. Acknowledge those that helped you
Poster “Don’ts”

1. Use different font throughout (title, headings, font, table labels, etc)
2. Use fancy background options
3. Forget to add charts, images, and graphs where applicable
4. Be text heavy
5. Use overly technical language
6. Forget to acknowledge those that helped you
Examples

The Influence of Parent’s Educational Level and Socioeconomic Status on Student’s Educational Level

Hiba Issa Asaad
Lebanese International University, Educ560

Introduction
A person’s education is closely linked to his/her life chances, income and well-being. Parents and family environment in general, have important impacts on the behavior and decisions taken by adolescents.

The study was conducted to determine the influence of parent’s educational level and the family’s socioeconomic status related to the parents’ jobs and monthly income, on their children’s educational level.

Methodology
- Questionnaire consisting of 26 questions was designed.
- Questions focused on three key variables of interest, which are:
 • Student’s academic level.
 • Parent’s educational level.
 • Family socioeconomic status.
- Surveys were distributed among a representative sample of 30 participants who are undergraduate students from two universities and with different majors, ages and genders.

Findings

Discussion
From the graphs, it is clear that students who reached the university level have a high socioeconomic status background but different parental educational level. But since the majority of the participants have parents who are educated, this shows that educational background of the family does affect the educational level of students.

Also figure 4, shows how students educational levels are affected by SES more than other factors.

Conclusion
The educational level of student is mostly determined by combining parents’ educational level, occupational status and socioeconomic status.

The study shows that:
- Students with high SES background have higher educational levels than those coming from low SES background.
- Parental educational level has no high influence on students’ educational level unless this low educational level was the reason behind the low SES level.

References

Contact Info:
E-mail: hibasaad.12@gmail.com
Blogger: hibasaad.blogspot.com
Discovering protein functional sites with unsupervised techniques

Shirley Wu¹, Russ B. Altman²

Motivation
Characterizing protein function - for example, what molecules they bind and interact with - is important for understanding biological processes. We can use this knowledge to engineer therapeutics and other beneficial biology.

Computational methods are fast and inexpensive, allowing high-throughput prediction of protein function. Most methods are supervised approaches, i.e., they use available data about known proteins and functions to make predictions. Thanks to genomics, researchers are now discovering novel proteins at a tremendous rate. We therefore need methods to identify new functions in proteins as opposed to methods that only recognize known functions.

Methods
We represent microenvironments with vectors of physical and chemical features calculated within a small spherical volume centered on the site of interest. We use k-means clustering to group together millions of such microenvironments computed from protein structures in the Protein Data Bank (PDB).

Evaluation
Results from the subcluster selection approach on the small test set seem reasonable. We then evaluated different distance metrics on a larger test set. Cosine similarity produced subclusters with better purity (external coherence) and silhouette values (internal coherence).

Simplified tree of small test set from cosine similarity-based hierarchical clustering and subcluster selection.

Application
We are currently applying the subcluster selection approach to the whole PDB k-means clustering. We then use a number of term enrichment methods to gain insight into the possible biological role of the microenvironment represented by each candidate subcluster.

Conclusion
We use unsupervised, automated techniques to identify biologically interesting groups of protein microenvironments, creating a potential pipeline for discovering novel functions.

References
The impact of the number of subjects for atlas-based automatic segmentation

J.L. Ducote, V. Sehgal, J. Wong, M. Al-Ghazi
Department of Radiation Oncology, University of California Irvine, Orange, CA

Abstract

Purpose: To determine the impact of atlas size on the performance of atlas-based automatic segmentation (ABAS) in the creation of organ at risk (OAR) masks for adaptive radiation therapy

Methods: A total of 25 patients who had undergone intensity-modulated radiation therapy for head and neck cancers were retrospectively selected for inclusion in a library to be used for ABAS with the M&M VISTA software package (UMI Software, Cleveland, OH). Treatment planning CT scans and four-dimensional (4D) gated PET scans were acquired at 2.5 mm increments and averaged over the entire breathing cycle. CT data were processed using in-house tools. ABAS template generation was performed on the treatment planning CT scans to automatically generate contours for the prostate and seminal vesicles. The algorithm was evaluated by comparing the contours generated to the contours created from the original planning CT scans. The accuracy of the generated contours was assessed using the Dice coefficient (DC coefficient) and the average distance (AD) between the generated contours and the original contours.

Results: ABAS generated contours were compared to the original contours generated from the treatment planning CT scans. The Dice coefficients were calculated for the prostate and seminal vesicles. The Dice coefficients for the prostate were 0.85 ± 0.05 (mean ± standard deviation) and 0.88 ± 0.04 for the seminal vesicles. The average distance between the generated contours and the original contours were 1.2 mm ± 0.5 mm for the prostate and 1.3 mm ± 0.4 mm for the seminal vesicles.

Conclusions: ABAS can be used to automatically generate contours for the prostate and seminal vesicles with high accuracy. The Dice coefficients and average distances were within acceptable limits for clinical use. The number of subjects used to create the library had a minimal impact on the accuracy of the generated contours.
How Online Social Media and Networks Are Changing Scholarly Practice
Anatoliy Gruzd (gruzd@dal.ca) & Kathleen Staves (kathleenstaves@dal.ca)
School of Information Management, Dalhousie University Social Media Lab, Halifax, Nova Scotia, Canada

Introduction
Scholars are increasingly using online social media (OSM) technologies to communicate, conduct research, and disseminate information about themselves and their work. However, there is very little hard data on why, and how scholars are using these new tools.

This poster presents our ongoing research to answer these questions and discover the role that OSM currently play within the scholarly community and its effects on scholars’ careers.

Method
- A comprehensive literature review
- 51 semi-structured interviews with scholars in Library and Information Science
- 38 face-to-face interviews were conducted during the 2010 ASIS&T Annual Conference, and 13 interviews conducted remotely over the phone

Results

<table>
<thead>
<tr>
<th>Reasons for Use of Non-Use of OSM Tools by Scholars</th>
<th>Users</th>
<th>Non-Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>As part of a research project</td>
<td>Time consuming & information overload</td>
<td></td>
</tr>
<tr>
<td>To stay up to date in their field</td>
<td>Risk of non-peer reviewed information</td>
<td></td>
</tr>
<tr>
<td>Communication and collaboration with colleagues, the public, students, etc.</td>
<td>Concern about loss of intellectual content & privacy</td>
<td></td>
</tr>
<tr>
<td>To create a sense of community for a research group</td>
<td>Colleagues aren’t using OSM, therefore there’s no reason to use it</td>
<td></td>
</tr>
<tr>
<td>More convenient than using print resources for research and communication</td>
<td>Institutional IT departments do not provide enough support</td>
<td></td>
</tr>
<tr>
<td>Great personal information management resources</td>
<td>Concern about sites’ profiting from users</td>
<td></td>
</tr>
</tbody>
</table>

Common Online Social Media Tools

- Our interviews indicate that currently there is no one single OSM tool that meets the varying needs of the scholarly community.
- Scholars are gravitating toward a wide variety of OSM tools, each satisfying a specific set of needs, whether that be work flow, collaboration, information dissemination, or research, etc.
- For example, many scholars used Skype to communicate verbally, Google Docs to share data and jointly edit documents and blogs to disseminate their work as progress and keep up with colleagues.

OSM & Tenure and Promotion
- None of the scholars interviewed worked for an institution that currently recognizes OSM publications as part of their tenure review and promotion process.
- The majority of interviewees agreed that OSM publications should eventually be considered, as long as there is a way to ensure that they contain relevant peer-reviewed scholarly content.
- Of the respondents who believe that OSM publications should be considered, many felt that it should count toward the service component of the tenure/promotion process.

Conclusions
- Online social media tools are quickly becoming an integral part of scholarly practices.
- Many earlier studies investigating scholars’ use of these tools most often cited the need to communicate with peers as the main reason behind scholars use of any social media tool (Barjak, 2009; Bonetta, 2007; Letecco, et al, 2010).
- Our study has shown that there are many more reasons scholars choose to use these tools and that their dependence and usage of OSM tools is increasing.
- With their growing ubiquity and high adoption rate among scholars, it will be interesting to see how the presence and usage of OSM tools will affect the ways scholars disseminate information and research results.

References

Acknowledgements
We would like to thank the many volunteers who agreed to be interviewed for our survey and for the input from the other members of the Dalhousie University Social Media Lab such as Philip May, Amanda Wilt and Sophie Ocon. Funding for this project was provided by the Social Sciences and Humanities Research Council (SSHRC) of Canada.

For Further Information
More information on this and related projects can be found at www.SocialMediaLab.ca
URAD Poster Template

Template for a 32” x 40” poster (title goes here)

Graduate Student Name (Replace all copy with your information)

Title of Action Research Study

Department of (your department here), College of (your college here), Northern Illinois University

Introduction

(These headers are standard categories, but can be changed)

How to use this template

Highlight text (including site where it says “Template” at the top) and replace it with new text from a Microsoft Word document or other text-editing program. The font size for body type and headings and the body text has been set for you. If you choose to change anything, use standard fonts such as Times New Roman or Helvetica and keep the body text between 20 - 30 points.

- 24 point Times
- 32 point Times
- 26 point regular
- 30 point Helvetica

Method

Text

Be sure to spell check all text and spellcheck your profile text. The poster is intended to be read in print;

- Use the active tense
- Spell check text using both points
- Use colon for emphasis on correct use of punctuation and understanding
- Avoid long numerical tables

Authors should revise the paper so that it is suitable for the format of the poster. Readers may not have a general rule as to how large or small a chart should be. Use one line of text on the poster with 2 lines of text on the page.

Images

Images should be the preferred file format for images appearing in printed posters. Avoid the use of low-resolution images, especially those downloaded from the Internet, as they will reproduce poorly.

Images should be inserted into the template in the top left corner of the page. Ensure that the images are high resolution and of good quality.

Results

Results

(Two sections with three images each section)

- 1st Section
- 2nd Section
- 3rd Section

Printing and Laminating

Creative and Media Services can print your poster.

To place your order, contact us at 815-753-6670 or 815-753-6671.

Plan ahead: allow three business days to complete the order.

File submission can be by email to

Conclusions

Creative and Media Services are open Monday – Friday from 8:30 am – 5:00 pm. We are located in room 108 S131.

- Payment can be made by check, cash, or credit card. Please indicate method of payment when ordering, and include an account number if necessary.

Acknowledgments

Check to make sure you’ve acknowledged your partner and funding agencies, either with text or with their logo.
Oral Presentation “Do’s”

- Make eye contact with people in your audience
- Explain your slides
 - Add to the text provided
- Follow a 1 slide per minute guideline
- Keep presentation time between 10-12 minutes
- Be prepared to answer questions
Oral Presentation “Don’ts”

- Have more than 6 bullets per slide
- Use more than 6-8 words per bullet
- Read straight from the slides
Community Engagement Showcase

• Suggested poster layout sections:
 – Abstract
 – Introduction
 – Objectives
 – Data/figures/charts
 – Outcomes/Reflection
 – References
 – Acknowledgments

• Include sections that are relevant to your project

• Poster should include a brief summary of the organization you worked with for your project
Community Engagement Showcase

- http://www.niu.edu/engagedlearning/research/ces/index.shtml under “Poster Guidelines”
Final Thoughts

• Have someone you trust proofread (and tear apart) your poster
• Print a test portion and tape on wall to judge *(can copy into word document with same size font)*
• The fewer words, the better
• Images, charts, and graphs break up text
• Ask for help (mentor, OSEEL, grad student)
• Have fun!
Office of Student Engagement and Experiential Learning (OSEEL)
Altgeld 100
(815) 753-8154
engage@niu.edu

For URAD specific questions contact:
(815) 753-8154
URAD@niu.edu