Clusters Model

Clusters
General Education (11 courses, 33-35 hours)

Liberal Learning
11 courses, 33-35 hours

- Fine Arts
 1-2 courses, 3-6 hrs
- Humanities
 1-2 courses, 3-6 hrs
- Intensive Writing
 2 courses, 6 hrs
- Natural Sciences
 1-2 courses, 3-8 hrs
- Oral Communication
 1-2 courses, 3-6 hrs
- Social Sciences
 1-2 courses, 3-6 hrs
- Quantitative Literacy
 1-2 courses, 3-6 hrs
- Technology
 1-2 courses, 3-6 hrs

Two PLUS Learning Clusters
1. Students must take two clusters of 2 or 3 Liberal Learning courses that examine a particular theme from different perspectives.

Sample Cluster Themes
2.
- Responding to the Past
- Shaping the Human World
- Cultivating Creative Expression
- Telling Stories
- Thinking Empirically
- Quantifying the Universe
- Understanding Others
- Communicating Directly and Indirectly
- Experiencing America
- Sustaining our Environment
- Evolving Life and Culture

1. The PLUS Learning Clusters are interdisciplinary thematic course-groupings of 6-9 hours (2-3 courses) that address contemporary and relevant topics. Approved clusters must include enough courses (no more than 7) and instructors to ensure that students choosing the cluster can complete their coursework in a timely manner. Cluster include courses from a variety of Liberal Learning categories.

2. Cluster thematic categories are created by interdisciplinary faculty groups and approved by the General Education Committee for a three-year renewable term. Each course must focus upon one Essential Skills SLO (#4 - Critical & Creative Thinking; #5 - Communication; #7 - Quan. & Qual. Reasoning) AND one Inquiry SLO (#1 - Global; #2 - Cultural; #3 - Environmental).
<table>
<thead>
<tr>
<th>STRENGTHS</th>
<th>CHALLENGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1. A reduction in GE credit hour requirements adds flexibility</td>
<td>C1. 8 Liberal Learning areas makes for a less flexible student experience</td>
</tr>
<tr>
<td>S2. Emphasizes 6 SLOs</td>
<td>C2. Clusters may create additional inflexibility</td>
</tr>
<tr>
<td>S3. Integration created through clusters</td>
<td>C3. No added emphasis on intensive writing</td>
</tr>
<tr>
<td>S4. Cluster themes are contemporary and flexible</td>
<td></td>
</tr>
</tbody>
</table>

The Clusters model is a general education program that offers students an integrated learning experience across the University’s traditional academic disciplines by employing learning clusters as a set of contemporary and relevant interdisciplinary themes. Changes include a reshuffling of the existing credit hours in the liberal studies distribution areas, adding a technology distribution area, the creation of a set of themes, and extending communication companion courses into the major.

This model requires the completion of eleven general education courses totaling 33-35 semester hours.

1. General Education Mission Statement

The purpose of a general education in the liberal arts at the Northern Illinois University is to encourage students to acquire knowledge and a skill set that is used across all academic disciplines as well as become conversant in the Baccalaureate student learning outcomes that promote life-long learning and empowers students to make intellectually informed, ethical decisions as responsible citizens. Students completing the general education program can:

1.1. Think critically and creatively;
1.2. Communicate effectively (written and oral); and
1.3. Reason both qualitatively and quantitatively.

2. Promotion of the Baccalaureate Goals and Student Learning Outcomes (SLOs)

The Clusters program focuses on three skill-based Baccalaureate Student Learning Outcomes:

2.1. Communicating clearly and effectively (SLO #5);
2.2. Demonstrating critical, creative, and independent thought (SLO #4);
2.3. Using and combining appropriate quantitative and qualitative reasoning skills to address questions and solve problems (SLO #7);

and three knowledge-based student learning outcomes:

2.4. Integrating knowledge of global interconnections and interdependencies (SLO #1);
2.5. Exhibiting intercultural competencies with people of diverse backgrounds and perspectives (SLO #2);
2.6. Analyzing issues that interconnect human life and the natural world (SLO #3).
3. Enhanced Writing

This program emphasizes enhanced writing by requiring that more general education courses explicitly focus upon SLO #5; communicating clearly and effectively.

4. General Education Content Exposure

The total General Education Requirements for an incoming first-year student is 33-35 credit hours. This model identifies eight general education (Liberal Learning) knowledge domains that cross-cut all disciplines. They are:

4.1. Fine Arts – (3-6 hours) critical study of visual expression and performance;
4.2. Humanities – (3-6 hours) critical study of literature, history, language, and philosophy;
4.3. Intensive Writing – (6 hours) foundational study of reading and writing skills;
4.4. Natural Sciences – (3-8 hours) empirical and logical study of the natural world;
4.5. Oral Communication – (3-6 hours) foundational study of oral communication skills;
4.6. Social Sciences – (3-6 hours) behavioral humanistic study of individuals, groups, societies, and states;
4.7. Quantitative Literacy – (3-6 hours) foundational study of mathematical operations;
4.8. Technology – (3-6 hours) analytical humanistic study of the manufactured world; technology is an important addition because it pervades our daily lives, and many disciplines within the university are concerned to understand how to produce technologies that can better our lives or to understand the human relation to technology and the potentially detrimental impact of technology on our lives. Programmatic examples of the Technology domain of knowledge include:
 4.8.1. The disciplines within the College of Engineering and Engineering Technology;
 4.8.2. Courses concerned with information technology in Computer Science and Library Science;
 4.8.3. Courses concerned with educational technologies (e.g. the ETRA program in Education);
 4.8.4. Courses concerned with the use of technology to solve business problems (e.g. the OMIS program in Business);
 4.8.5. Courses concerned with medical technologies (e.g. the Medical Laboratory Sciences program in Health and Human Sciences);
 4.8.6. The theoretical foundations of this domain could include some courses from mathematics (Mathematics, Statistics) and all of formal logic (Philosophy), as the latter is the foundation of information technology and electrical engineering.

4.9. PLUS Learning Clusters - This model organizes the general education curriculum into a series of themed clusters. Clusters are interdisciplinary course groupings that address contemporary and relevant topics.

 4.9.1. A cluster consists of courses taught by faculty from at least two departments from any combination of colleges and that are connected in a deliberate way to address the same topic from multiple disciplinary perspectives.
4.9.2. An exception to interdisciplinary study is allowed for Sciences & Mathematics, which could be appropriately taught through a two-course sequence in a single science discipline.

4.9.3. Clusters are created by interdisciplinary faculty groups and approved by the General Education Committee for a three-year renewable lifespan.

4.9.4. Clusters are created as 6, 8, or 9 semester hour requirements.

4.9.5. Approved clusters must include enough courses and instructors to ensure that students choosing the cluster can complete their coursework in a timely manner.

4.9.6. Emphasizing the vertical nature of general education, clusters might consist of lower-division courses, a combination of lower- and upper-division courses, or upper-division courses. Upper-division courses must not assume prerequisite disciplinary knowledge or earned hours.

4.9.7. Any single course may be integrated into a maximum of two clusters. No course may be counted more than once in a student's choice of 33-35 semester hours in the program.

4.9.8. Clusters require faculty to demonstrate evidence of course integration by regular information meetings, team teaching, themed learning communities, sequential courses, paired lecture and discussion sections, etc.

5. Curricular Flexibility

The Cluster model specifically breaks down disciplinary silos, opens the field for a bit broader course consideration and inclusion into general education, and utilizes our strongest asset, the faculty, to think and educate in creative and synergistic ways. It encourages cross-disciplinary collaboration and interconnections between seemingly disparate fields and colleges, yet should minimizes cost by minimizing duplication of effort.

The Clusters program also provides significant opportunity for the general education content to be tailored to the needs of a major studies program. Both lower-level and upper-level courses may be chosen for inclusion in the general education program, allowing more advanced study in a given Cluster. Upper-level programs may direct students toward preferred Clusters that are aligned with the major. Students may also have the flexibility to choose Clusters that are more aligned with their major studies or their interests.

6. Student Appeal

Students should find the integration of courses into clusters appealing, and find that more courses will tie to their major studies. The cluster format sustains student focus despite programmatic breadth, creating a flexible format for vertically infusing General Education into any step of the educational process.

7. Infrastructural Costs

7.1. Faculty incentives for transforming or designing new themed learning course clusters;

7.1. Improvements and enhancements for writing and research across the curriculum.
8. References

8.1. UCLA clusters program: http://www.uei.ucla.edu/clusters.htm
8.3. Portland State core/cluster program: http://www.pdx.edu/unst/home